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ON SEEKING BUCKLING MODES OF A CIRCULAR PLATE* 

A.A. FONAREV 

A construction of the buckling modes of a circular plate is examined by 
using the solutions of an infinite system of non-linear algebraic 
equations that appears on substituting their non-trivial solution 
representable, by assumption, in the form of series, into the 
non-linear Karman equations. It is shown that an approximation can be 
found to the solution of the system by using a projection method and a 
projection-iteration process in the Banach space of sequences whose 
series from the elements converge absolutely. Results of computations 
are presented. 

1. The axisymmetric deformation of a thin circular elastic plate of constant thickness 
that is in equilibrium under a uniform compressive load applied along an edge is described by 
the non-linear Karman equations /l/ that reduce to the following system of equations 

GQ (r) + AZ (1 - P (4) Q (4 = 0, GP (4 = -1/2Q2 (r), 0 < r -=z I 

G = rmsd (Pdidr)ldr 

(1.1) 

where r is the dimensionless radius hz is a dimensionless load parameter, Q is the dimension- 
less derivative of the transverse displacement with respect to the radius, and (P - 1) is 
the dimensionless radial stress. 

The assumption on symmetry and smoothness reduces to the conditions 

Q' (0) = 0, P’ (0) = 0 (14 

If the edge r=l of the plate is rigidly clamped, then the additional boundary con- 
ditions 

Q (1) = 0, P (1) = 0 (1.3) 

should be satisfied. 
For any h the boundary-value problem (l.l)-(1.3) has the trivial solution Q W = 0, 

P (r) s 0 (the non-buckling mode). Other (non-trivial) real solutions are called buckling 
modes. 

As a result of linearization of problem (l.l)-(1.3) near the non-buckling mode, a linear 
second-order boundary-value problem is obtained 

GQ + h2Q = 0, 0 < r< 1; p' (0) = Q (1) = 0, P = 0 

which, for h=&, has the non-trivial solutions 

Qn = r-‘J, (h,r), J, (A,) = 0 (n = 1, 2, . . .) 

utilized later to construct the plate buckling modes, where h, is the n-th zero of the 
Bessel function J,. 

It is known that buckling modes exist for h > h1 (see /2/ and the bibliography in /2/, 
say). 

We assume that the non-trivial solution Q(r) and P(r) of problem (l.l)-(1.3) is 
represented by the series 

(1.4) 

where E belongs to the neighbourhood of the zero of the real line R, E # 0. Then substitution 
of series (1.4) into the first equation in (1.1) yields 
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After multiplying this equality by +Om (r) and integrating between 0 and 1 with respect 
to r, the following expressions are obtained because of the orthogonality of 01,Q2,...: 

h%ql 

an = (a? - h,B) ;;p, II* 
(n = 2, 3, . . .), a2 = a12 II Ql II’ 

II Q, IQ - E21, 
1 

I, = r%EaZbQn dr, s II Qn II1 = { rJ12 (n,,r) dr = 4 1,s (A,) (n = 1, 2, . . .) 
0 0 

Similarly, the expressions 

rT&2Q, dr (n = 1,2, . . .) 

(i-5) 

(l-6) 

are obtained on substituting series (1.4) into the second equation of (1.1). 
Expressions (1.5) and (1.6) yield an infinite system of non-linear algebraic equations 

in a*. u3. . . . and b,, b,, . . . which will be investigated later. It will be shown here that 
the system has a solution in a certain right semicircle of the point hl. 

If %. a,, . . . and b,, b,, . . , in series (1.4) are solutions of system (1.5) and (1.6), 
then series (1.4) yield a non-trivial solution (or the buckling mode) of problem (l.l)-(1.3) 
with load parameter Aa obtained on substituting the solution of system (1.5) and (1.6) into 
the right-hand side of the second formula in (1.5). The solution of problem (l.l)-(1.3) 
being obtained here formally satisfies (1.1) because the convergence of series (1.4) being 
obtained, and the series for derivatives of terms of these series are not investigated. 

If the boundary-value problem (l.l)-(1.3) is studied in the neighbourhood of the point 

h =h, (m>2), and not h = h,, then this case is considered analogously, and it is suf- 
ficient to take a,,, = 1 instead of a, = 1 in (1.4). 

2. Let us investigate the infinite system of non-linear algebraic Eqs.(1.5) and (1.6). 
Let 1, be a Banach space of sequences z = (Xl, 12, . . .) or real numbers for which the 

series Ix1 1 + Ix, 1 + . . . with the norm III/I = 1x1 1 + Ix2 I + . . . converges, and let D = 

(z = (Zl, 52. . . .) E I,: z1 = 1. I x.2 I + 1% I + . . < C), where C is an arbitrary fixed positive number. 
We consider the mapping B from D in the set of sequences that sets the sequence Bx = 

((WI, (B& . . .) obtained on substituting elements of the sequence x into the right-hand 
side of (1.6) in place of a,, a2, . . . for n=1,2,..., into correspondence with the element 
z = (x,, x2, . . .) E D. For each n>l we have 

because we have I JI (4 I < 1 for all t>O, which, when the Hijlder inequality is utilized, 
yields 

Therefore, by virtue of the convergence of the series 

(this series converges because Jo (1,) = (2/(%))"* (coa (h, - s/4) i- 0 (&,-l)) and h, = (n + 114) JC $ 
0 (n?) for large values of n, see /3/) BXE 1, and a constant C,>O, independent of 
.r=D exists such that 11 BxII< C,. 

Furthermore, for all s,y~ D we have 
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for n>l. This means that a constant C,> 0 exists such that 11 Bs - ByI1 Q C,II z - y/I, VX, 
LED. 

Let 1, x R be the Banach space of the pair (x, t)cz 1, X R, xE_ I, and tE R, with the 

norm II (G t) II = II x II + I t I . 
We define a real-valued function T that sets a number T(z,t) obtained on substituting 

elements of the sequences x and Bx in place of aI3 a2. . . . and A,, A,, . . ., respectively, and 
t in place of E on the right-hand side of the second formula of (1.5) in correspondence with 
the element (x,t)~ D x R (xED) in D x RC I, x R. Positive numbers er, C, and C, exist 
such that I T (x7 E) I Q c, and I T (I, E) - T (Y, s) I Q C$ II x - Y II for all E E I-+, ~~1 and 
x,y~D. 

We also define the mapping A from D x R into the set of sequences that sets the 
sequence A (x, t) = ((A (x, t))l, (A (x, t))*. . .) with (A (5, t))l = 1 and (A (x, t)), (n > 2) obtained 
by substituting elements of the sequences x and Bx in place of a,,a,, . . . and b,, b,, . . . . 
respectively, and the numbers T(x,t) and t in place of ha and E, respectively, in the right- 
hand side of (1.5) for n = 2, 3, . . ., in correspondence with the element (x,t)~ D x R . Con- 
stants Ed fz (0, 4, C, > 0, C, > 0, exist such that A (x, E) C? I,, II A (x, E) 11 < 1 + C,E~ and 

II A (x, E) - A (~3 E) II < W II x - Y II for all sE [-Ep. Ezl and GYED. Therefore, con- 
StantS Eg E (0, Es1 and p E (0, 1) exist such that A (I, E) E D ana II A b, d - A (Y, 8) II -S Q II 5 - 
Y II for all e E [-so> E.1 and GYED. And the mapping A (z,~) is here con- 
tinuous in e in D X [--EC,, Eel. 

We note that explicit expressions can be obtained for the constants Ci (i = 1, . . ., 6) in 
terms of C and the sum of the series (2.1). 

Because of the fixed-point principle /4/ a mapping x0: [---F~, ~~1 +D exists such that 

A (&I (a)> 8) = 20 (8) for all Ed [-~~,e,l, where such a mapping is unique and continuous. And 
for each fixed EE[-ea, ~~1 the element 20 (e) is the limit of the sequence ui+r = A (u”, e) 
(i = 0, 1, . . .) with arbitrary UOE D. Furthermore, if elements of the sequences X0 (e) and 

Bxo (s) are taken as a,,a,,... and b,, b,, . . . in the series (1.4), then these series yield 
the solution of the boundary-value problem (l.l)-(1.3) with the load parameter hz = T (zo (E), 

E) (E E [--Eo, Eel). 

System (1.5) and (1.6) cannot be successfully solved exactly; consequently, approximate 
methods for solving are considered later. 

We fix any i>2 and consider the subspace Et of the space 1, consisting of the 
sequences x = (x,, x2 . . .) E 1, with x, = 0 for all n> i. We define the linear projection 
operator Fi: I, +Ei, that sets the element Fix = y ~(y,, yz, . . .) with y, = 5, for n = 1, 
. ., 1 and Y, = 0 for n> i in correspondence with the element x = (x1,x2, . ..)E 1,. We 

have II Fix II < II 5 II , Vx E 1,. 
We introduce the set Di =D fl Ei and the mapping .' Bi : D-P Ei, Bix = FIB (Fix) for z E D. 
We define the function Ti: D x [--E~,E~~ + R, that sets the number Ti(x, t) obtained on 

substituting the elements of the sequences Fix and Bix in place of a,,a,,... and 

b,, b,, . . . , respectively, and t in place of s in the left-hand side of the second formula 
in (1.5) in correspondence with the element (z, t)E D X (-.%, ~01. We also define the mapping 
Ai: D X [-Eo, ELI --t Ei that sets an element Ai (x, t) = z 3 (zI, zz, . .) E Ej with z1 = 1 and 
z, (n = 2, . . ., i) obtained as a result of substituting elements of the sequences Fix and 
B,X in place of a,,a,,... and b,,b,,..., and the numbers Ti (x, t) and t in place of h2 
and E, respectively, in the right-hand side of the first formula in (1.5) for n = 2, . . ., i, 
in correspondence with the element (z,t)~ D x [--Ed, ~~1. We have Ai (5, z) ED~ and II Ai (2, 
s) - Ai (Y> s) \I < PII x - Y 11 for all aE f--e,, EJ and x,y~D, where the number q is the same 
as above. Therefore, from the theorem in /5/ we obtain the following theorem on the con- 
vergence of the sequences of the projection method (i.e., the convergence of X”(E)) and the 
projection-iteration process (i.e., the convergence of yi(&)) that combines the projection 
method and the iteration process in one, to the solution 50 (a) of the equation A (z, E) = I 

(x E D). 

Theorem. For each i> 2 a mapping zi:[--EO, ~01 + Di, exists such that At (x4 (E), E) = 

X2 (E) for all e E I-e,, EJ, where such a mapping is unique and continuous; the sequence of 
mappings 2" (8) (i = 2, 3, . . .) converges uniformly to .rP(e) in [-Ed, EJ; for any mapping y': 

a sequence of mappings yi+l (E) = A;+,(~‘(E), E) (i = i,2, . ..) 

kEzO $ ynDa[-Eo, EO]. 

converges uniformly 
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Remark. For fixed i> 2 the mapping xi (E) from the theorem can be found by using the 
iteration process 

2j+l (a) = Af (zj (E), e) (j = 0, 1, . . .) 

with the arbitrary initial mapping z" :[-e,, eJ+ Dt, where the following estimate of the 
rate of convergence holds: 

11 zj (E) - x* (E)II < 2 (1 + C) qjl(l - q) 0’ = 0, 1, . . .) 

for all E E [-so, .sJ. 
The Theorem and the Remark enable us to seek an approximation to the solution of system 

(1.5) and (1.6) by which approximations to the buckling mode of problem (l.l)-(1.3) can be 
constructed. 

In conformity with the above discussion, computations were performed using the projection 
method nad the projection-iteration process on ES-1033 and ES-1061 computers with double 
precision. The results showed that so is not a small number. 

We will present some results obtained by the projection method. In this case the com- 
putations were performed for fixed E in conformity with the Remark. The computation ceased 
for 

max 
T&=2,. , i 

1 (,‘+I (e) - 2 (e)), ) < 6 

where 6 is a given accuracy (see zj (e) in the Remark), here an element with (zO(e)),=O for 
IZ > 2 was taken as z" (e) = ((+ (8))~ (20 (e)k,. . .) E Di. If m iterations were performed as a result 
then zm (e) = (a,?, upm , . . .) and Bizm-l (e) = (by-l, br-l, . .) were used to construct approximations 
to the buckling modes of problem (l.l)-(1.3): approximations to the buckling modes were ex- 
amined in the form of the sums 

and the following quantities were calculated: 

y1 = max 
k=1....,49 

1 GQi (r) + h2 (1 - Pi (r)) 0, W 1 Ir=rh 

ya = max 
k=l.....PB 

( GP, (r) + 'hQ1p (4 I Irsrk 

(A2 = Ti (P-l (e), e), rk = k/50) 

which it is natural to designate as errors because they are obtained on substituting 
approximations (2.2) to the buckling modes into (1.1). 

Results of computations for 6 = 40-16 are presented in the table. 

1. 

2. 

3. 
4. 
5. 

e 

1.19.10" 
8.5.10-e 
7.06.10-6 
0.133 

1.73.10-= 1.04.10-a 
7.1.10-3 4.26.10-a 
6.53.10-a 3.71.10-4 
1.06.10" 5.1.10~' 

V, 

2.33.10-6 
2.1.10-5 
8.55.10-S 
9.95.10-a 
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